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Webinar —Uncertainty
calculation of luminance

coefficient
[measured with reflecto-
goniometers and related to
geometrical characteristics]
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Measured quantity : luminance coefficient q —

definitions
(—@ S I

i 2 ///

\ // Road surlace

* q:viewing angle

Y: lighting angle

Luminance coefficient:

q(a,ﬂ,n:“,‘f("Tf’g’.

Bidirectional reflectance
distribution function (BRDF)

_ dLy(8y.0,)
f(gn(.f)x-gr-,d)r) - dE.(ﬂ.-(f’.)

B: angle between the lighting plane and the viewing plane

0, angle between the viewing plane and the road axis at the

considered viewing point -> neglected because of isotropy of

pavement reflectance



Impact of optical systems characteristics for
illumination and detection : simple cases

3

A : Almost perfect collimated systems , B : no optics direct lighting from a point
source — FOV effect — C : no optics - FOV effect and aperture effect.

A : measurement of g are done for defined (a, B,Y) : centres to centres angles

B, C: measurement of g are done for angles varying around (a, 3,Y)

A, B, C conditions will yield to different measured ¢ values, A giving the true
value, the measurand obtained in B and C conditions is equal to the true value
plus a systematic error (not randomized).




Impact of optical systems characteristics for
illumination and detection : simple examples

Conventional Lens
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Laboratory and portable (in-situ measurement) goniometers have
numerous optical setups, requiring to consider many cases.

But optical systems characteristics for illumination and detection
can sorted in two categories : (1) collimating and telecentric
systems (defined by beam divergence) and (2) imaging or flat
collecting/emitting areas (defined by FOV and aperture).




Computer calculation of the systematic error related
to geometrical characteristics
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Approach :

* The reflection angles on the sample are defined by the
illumination ray direction and the detection ray direction, each
ray is represented by a starting point and an ending point
belonging either to the emitting area, or sample area or
detection area, these areas are delimited by FOVs and
apertures.

* Averaging the luminance coefficient for all possible points over
the illumination area, sample area and detection area will
provide the actual measurand with a systematic error.

 If a reflection model is given the error can be calculated as the
difference between the true value and the estimated
measurand by the averaging process.
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Computation : integration
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Light source: L points Computationloops: Lx N x M

Sample: N points




BRDF models

450
400
350
300
250
200
150
100
50

Left : Lambertian and Phong (specular) combined components

Right : simulation of C2 by the software (with the experimental
component)




Computer calculation of errors related to geometrical
characteristics
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* The reflection model must be close to the sample for which we
want to determine a measurement uncertainty, but also the
way the data model are obtained must be fast enough to
enable averaging over an huge number of points in an
acceptable time.

* A parametric mathematical BRDF model has been successfully

implemented for five samples of different specular coefficient,
S1 values : 0.25, 0.39, 0.93, 1.11, and 1.49.

 Toincreased the speed — a high resolution (0.1°) 3D lookup
table of the model is precomputed, then the luminance
coefficient is linearly interpolated for

”




Modelling road samples (example measured at
METAS)

., r values
METAS Data
rvalues
500 ~—
- 400 + 400

T 300
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Simulation

- 300

- 200 T 200

- 100 —~ 100

~ o

p (0 to 180°)

B (0 to 180°) o

Example of a fitted r-table under Excel spreadsheet. Difference on r-table is
3% of the maximum value. The five model references have been fitted with
deviation less than 10% of maximum from original r-tables.
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Model details (excerpt from the related paper’s draft)

Model components

Mathematical expression

Parameters

diffuse (constant)

scattered specular

(Phong model) [14]

experimental based
on an artificial
function of (g,p)

global attenuation
factor for grazing
angles of incidence
or observation

scattered retro-
reflected (modified

Phong model)

kdiff

kphong : (COS 0)7

Kewp " F(£)°
. (E;B)exp(l +q
- f(2)7)

g(6i)- g(6r)/g(6r")

k

phong—retro

* (cos')*

cosQ) = cosBi- cosBr — sin Bi - sin Or - cos(@i — @r)

@i, 8r polar incident and reflected angles, equal to 0 at zenith
and < /2

@i, r -azimuthal and reflected angles, ¢ of detector centre is 0
e= Bi-6r/6r'
B = lpi— or— m|

cose
f(e) =sing: —
(coseg)* +pu
a-6%*+b-6+c)f, for 8 > 6,
(6) = :
g\7) = g(8) =1, for@< 6, 6, >853°

Er* -polar observation angle of fitted r-tables (89°)

cos Q' = cos Bi - cosBr + sin i - sin Or - cos(@i — @r)

Note: all parameters are variable and adjusted to match the targeted reference, except the value of p of the function f

which is a constant.



Comparison with experimental results
(provided by METAS —NMI of Switzerland — R3 plate)
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k measured
k ratio

100 ® _
I

) ‘ - 80
15 — 40 L 5&' T ”
betas [°] 20 betas [°]
0

—< 40
20
0 gammas [°]

gammas [°]

Ratio between measured r-tables MoFOR/LaFOR Ratio between soft results MoFOR /LaFOR

Note : the software uses the CIE R3 table, the experimental data were obtained with a
physical reference plate R3, differences between the sample has not been studied.




Accounting of angles uncertainties in geometrical
effects

 Sample’s misalignments and positioning errors, of random nature,
bring also contributions from the uncertainty on angles.

Misalignments of sample change the effective illumination angles
and the detection angles.

* Systematic errors due to angle’s integration and uncertainty on
angles, including sample’s misalignment, must be computed all
together and only a Monte Carlo Method (MCM) is easily
implementable. For each draw an integral must be computed with
the input angles represented by their distribution and modified by
misalignment also represented by distributions (next slide)

« To gain time an approximation of BRDF based on a 2" degree
polynomial, derived from 3 integrations, is used for each
independent angle variation, this function is used in place of the
integral computation ( see appendix |)
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Monte Carlo Method — GUM supplement 1

a) Formulation:
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1) define the output quantity Y, the quantity intended to be measured (the measurand):
2) determine the input quantities X = (Xy,..... Xy ) upon which Y depends;
3) develop a model relating ¥ and X;

4) on the basis of available knowledge assign PDFs—Gaussian (normal), rectangular (uniform), ete.—to the Xj.
Assign instead a joint PDF to those X; that are not independent;

b) Propagation: propagate the PDFs for the X; through the model to obtain the PDF for Y

A

9x,(&1)
Figure 2 — lllustration of the
propagation of distributions — Y =f(X) ——
for N = 3 independent input 9x,(&2) gv(n)

guantities /\

(/\3 S-}
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Examples of results from the software

#% LUMCORUN

Eile Edit View Window Help

Qigd #

&5 © HC

/" FORM-3” UncChart-1 X |

Processed model - model (%) : average (blue) - std dev (red) - uncertainty (black)
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50.00 65.00 80.00
Couples(Gamma,Beta) - scale : Gamma (degrees)

CAP NUM SCRL

Goniometer sampling :
. Gama : 5°, Beta = 10°, 369 points
Distances

. Sample - detector: 500 mm

. Sample — light source: 500 mm

Diameters

. Sample Illlumination size: diam. 50
mm

. Light source: diameter (8 mm)

. Detector size: diameter ( 8mm)

. Sample detection size diam. 50
mm

Spatial Sampling

. Area sampling: 2 mm

Angles uncertainty and sample
misalignment

. standard uncertainty 0.2° -
distribution : uniform

Simulation sample :
. METAS sample
Computation time=35s

MCM : 5000 trials

The blue trace is the systematic error due to the integration, the red trace is the
standard deviation of this integration and the black trace is the extended uncertainty .
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Programme demonstration

End of slides, screen is switched to the
programme window for demonstration.




Appendix 1 : MCM approximation (JCGM 100)

Combination of uncertainties

, ; 2 ; 2
N N 2 N N of .
”c Z[(‘ u ] EZN;Z(J') (11a) ”c(."){Zﬁ"‘(""’)} =[ £ Ox. u(x il} (16)
i=1 i=1 i=1 i=1 " i

NOTE 2  The combined standard uncertainty «.(y) may be calculated numerically by replacing c;u(x;) in Equation (11a)
with

Z; =—{f [1‘1, oxtu(xg), .\'_\v]—f[.\'-h oxi—u(xg), x_\r}}

That is, «;(v) is evaluated numerically by calculating the change in y due to a change in x; of +u(x;) and of —«(x;). The value
of «;(y) may then be taken as |Z,| and the value of the corresponding sensitivity coefficient ¢; as Z;/u(x;).

C ,.u(a) is computed using I(a-6a), I(a), I(a+8a) to derive a 2" degree
polynomial p(a), 6da is adjusted according to a distribution:
C ,-u(a) = standard deviation of p(a) for n draws of a.

This is done for (o, B,Y) and the two misalignment angles and then
combined using 11a.



